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ABSTRACT

The fault detection and isolation (FDI) procedure increases the assurance of quality, reliability, and 
safety of industrial systems. Several faults may appear simultaneously, and the purpose of multi-fault 
diagnosis is to identify and locate these multiple faults. This work is particularly interested in the 
diagnosis based on the structural analysis of the system; residuals can be generated and used as fault 
indicators by model-based fault detection techniques. The isolation is dependent on the structure of the 
fault signature matrix. A new fault signature that represents the superposition of the fault is produced 
by simultaneous fault effects, resulting in an additional column in an extended signature matrix. This 
remedy is rather combinatorial. This research focuses on two methods to isolate multiple faults: (1) 
A modified enumerative method; (2) A hybrid ant colony optimization algorithm-genetic algorithm 
(Hybrid ACO-GA) is adapted to the MFD problem which has the advantage of a better research as 
well as the hybridization with GA.

Keywords
Analytical redundancy relations (ARRs), Fault Detection and Isolation (FDI), Fault Signature matrix, Hybrid 
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INTRODUCTION

Safety critical systems, such as aircraft, automobiles, nuclear power plants, and space vehicles, are 
becoming significantly more complex and interconnected. The recent advances in wireless technology, 
remote communication, computational capabilities, sensor technology, and standardized hardware/
software interfaces have further increased the complexity of these systems. This complexity may 
result in failures of multiple components. Hence, there is a need to develop smart on-board diagnostic 
algorithms that can determine the most likely set of failure causes in a system, given observed test 
outcomes over time (Ouyang et al., 2023). Fault detection and isolation (FDI) is an essential aspect 
of Industry 4.0, which refers to the integration of digital technologies in manufacturing processes. 
FDI in Industry 4.0 involves the use of advanced monitoring and data analytics techniques to detect 
and isolate faults or anomalies in industrial systems (Webert et al., 2022; Kang et al., 2022).
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In some systems, many defects may also manifest at once. This circumstance often arises when 
a first fault occurs, but the system has not been halted, either because the first fault was not serious 
or had a slow impact. In the meanwhile, a second problem arrives. When a reconfiguration approach 
is applied, this circumstance occurs more frequently. Reconfiguration techniques modify the control 
law, enabling production to go on even when a defect occurs.

The presence of two simultaneous faults in the system results in a new fault signature (Koscielny, 
1993), which corresponds to the superposition of the two fault effects. According to the linearity 
hypothesis, processing the isolation of multiple faults using an expanded incidence matrix that includes 
a new column for each combination of faults may result in a combinatorial solution.

Multi-fault diagnosis (MFD) is a key issue in fault diagnosis technology because multiple 
faults commonly exist in engineering and complex systems. Zhang et al. (2015) did a survey on 
fault mechanism, manifestation of symptoms, and approach thinking for MFD. The MFD problem 
originates in several fields, such as medical diagnosis (Yu et al., 2007), error correcting codes, speech 
recognition, distributed computer systems, and networks (Odintsova et al., 2005). The MFD problem 
in largescale systems with unreliable tests was first considered by Shakeri et al. (1998).

The problem at the origin of this study is to study the possibility of the occurrence of several 
failures (or faults) simultaneously in a system, and that it is not interrupted or corrected after the first 
fault. The monitoring system in this case must diagnose the presence of different faults by making 
the best use of the structural properties of the system studied. MFD identifies multiple faults in a 
system, based on one or more symptoms and can be used as part of an overall diagnostic system or 
as a separate system. Its importance is evident in modern complex systems because they are systems 
characterized by the interconnection of several components, and the relationships describing the 
processes can be of different types (algebraic, differential). On the other hand, the complexity of this 
type of diagnosis plays an important role in the performance of an overall system.

Specifically, the objective of the research presented in this paper is to determine the possibilities 
of combining the effects of several defects on the system components. In addition, to study the 
situation in depth, two algorithms are presented and fully implemented to explore their possibilities 
and to evaluate the quality of their respective results. One is based on the standard approach that we 
have reduced, which consists in identifying and testing all possible combinations of faults, as well 
as the temporal and combinatorial inconsistencies that may occur. The other bio inspired algorithm 
ACO-GA uses different techniques of research and best exploration strategy to identify appropriate 
combinations of defects using simple elements.

This choice was guided by the fact that the reduced exact algorithm remains the reference in 
terms of complete, exhaustive, and exact solutions, and that the ACO-GA offers the best quality/
performance ratio, especially when the system is large.

This paper is organized as follows: The first section introduces our research while the second 
section presents background about different methods for diagnosis and some definitions. Then the 
proposed approaches are presented in the third section. After that, in the fourth section we describe 
the steps of the ACO-GA algorithm. In the fifth section, we discuss the results obtained. Finally, a 
conclusion and references are given.

BACKGROUND

Early detection and isolation of faults are critical tasks in modern process industries. Many research 
works have been made during last decades to improve fault detection and isolation methods. Existing 
methods can be grouped into two general categories: model-based methods (Venkatasubramanian et 
al., 2003) and data-driven methods (Yin et al., 2014).
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Data-Driven Diagnosis
Data-driven diagnosis, in general, isolates faults by using classifiers learned from training data 
using nominal data and data from different faults (Theissler, 2017). However, in many industrial 
applications, faults are rare events, and available training data from faulty conditions are usually 
limited (Sankavaram et al., 2015; Dong et al., 2017). Collecting a sufficient amount of data from 
relevant fault scenarios is a time-consuming and expensive process. Also, if there are faults that do 
not occur before several years of system operation time, they might not be considered during system 
development. Therefore, it is desirable that a diagnosis system is not only able to identify and localize 
known faults as they occur, but it should also be able to identify new types of faults and improve fault 
classification performance over time as new data are collected (Pulido et al., 2019). One solution to 
limited training data from different fault scenarios is the use of physical models.

Model-Based Diagnosis
An advantage of model-based methods, with respect to data-driven methods, is that fault isolation 
performance can be achieved without training data from different faults (Cordier et al., 2004). Even 
though the fault has not been observed before, it is possible to point out likely fault locations based 
on residual information and model analysis (Pucel et al., 2009). However, there are often many 
diagnosis candidates that can explain the triggered residuals, meaning that it can still be difficult to 
identify the actual fault.

Differences between the estimated and the actual behavior are symptoms or fault indicators. 
These differences are called residuals. Later, the residuals are evaluated aiming at localizing the 
fault. These structured residuals can be generated using different methods studied (Abid & Hafid, 
2018), as shown in Table 1.

Most methods for residual generation are based on fault detection filter observers (Zhong et al., 
2015; Chen & Speyer, 2000), parity space (Gertler, 1997; Medvedev, 1995), parameter estimation, and 
graphical and mathematical approaches (Medvedev, 1995; Jha et al., 2017). Essentially these methods 
compensate the lack of sensors by taking into account the dynamic nature of the considered system.

Fault isolation, or locating the defects in the system, is a crucial step in the fault diagnosis of 
industrial systems; with increasing system complexity, the system must be dependable and capable of 
early defect detection to function autonomously to reduce expenses and the threat of possible hazards.

In model-based diagnosis, fault isolation is mainly performed by matching the set of triggered 
residual generators with the different fault signatures to compute diagnosis candidates.

Despite the general acknowledgment of the two steps in FDI methods and the importance of each 
step, most publications focus on the residual generation step. This work focuses on the isolation step.

The major methods for fault isolation are based on the handling of multiple faults; one column 
for each possible multiple fault can be added to the isolation table. This approach was suggested in 
Gertler (1998). However, if N is the number of components, the number of columns needed is 2N −1, 
which makes this approach computationally intractable for anything but small systems.

The second problem, multiple fault types per component, can be addressed by adding separate 
columns for each fault type (Nyberg, 2002, 2006). When combining this with a consideration of 
multiple faults, and letting M denote the number of fault types per component, the number of columns 
needed becomes (M + 1)N − 1. Thus the computational burden is increased even further.

Multi-Fault Diagnosis Problem
Large-scale, complex, and dynamic systems that are described by a large number of equations, both 
linear and non-linear, can be studied using the broad framework of structural analysis. Equations are 
abstracted by retaining only their connections to variables. As a result, it disregards the specifics of 
parameter values in favor of basing the analysis on the system’s structure using effective graph-based 
techniques (Cassar & Staroswiecki, 1997). Consequently, structural analysis has the primary benefit of 
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being applicable to uncertain systems for which the analytical model is not fully understood (Cassar 
& Staroswiecki, 1997; Düstegör et al., 2006).

Analytical redundancy is used in the fundamental MFD techniques, such as parity equations 
(Gertler, 1997) and state and output observers (Patton & Chen, 1997), to achieve the fault isolation 
function. M residuals rj (i = 1 . . . M) are generated. When a fault Fj (j = 1 . . . N) occurs, some 
residuals stay close to zero, and others become different from zero. The D(M × N) signature matrix 
typically translates the residual state into Boolean terms 0 or 1 using a threshold.
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Table 1. A sample of the review papers of model-based methods

Reference Type of analysis The model used Fault detection and 
isolation

Bouziani L., Haffaf H. 
(2010)

Structural analysis structural model multi fault isolation

Liu J. & al. (2016), Sidhu 
A. & al. (2015) Chatti N.& 
al. (2016), Jha, M.& al. 
(2017)

mathematical methods mathematical model Fault detection

Zhong, M. & al. (2010), 
Zhong, M. (2015)

Fault Detection Filter 
(FDF)

linear discrete time-varying 
system

Hammouri H., Kabore P. 
(1998)

bilinear systems Fault detection

Tidriri K.& al. (2018) Structural analysis Tennessee Eastman process Fault detection

Chatti N. & al. (2014) traction system of an 
intelligent and autonomous 
vehicle

structural analysis multiple faults diagnosis

Yang Y. & al. (2015) Observer based method nonlinear systems fault detection

Gertler J. (1997) parity relations Fault detection and 
isolation

Medvedev A. (1995) parity space method numerical example isolation of sensor and 
actuator faults

Xu A., Zhang Q. (2004) high gain observer and a 
recently developed linear 
adaptive observer

nonlinear systems

Besancon G. (2003) high-gain observer three-tank system 
benchmark

fault detection

Periasamy V. (2019) non-linear observer Solid Oxide Fuel Cell 
(SOFC) systems

Fault identification
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The isolation function’s goal is to identify where in the system fault Fj first manifests itself. 
Column j of the signature matrix displays the fault Fj signature. The signature matrix structure affects 
the capacity to isolate faults (Gertler & Anderson, 1992).

It is not a simple matter to compare the columns of the Boolean incidence matrix with the 
residual vector.

In real industrial systems, several failures or faults can occur simultaneously. In general, this 
situation occurs when the system has not been interrupted or corrected after the first occurrence of 
a fault. For this reason, MFD can be used as a part of a global diagnostic system or as a complete 
system depending on the type of system in which it is used. Its purpose is to identify multiple faults 
in a specific system based on one or more symptoms.

Modeling for MFD
In the case of MFD, the diagnosis matrix must include the signatures of the multiple faults so that they 
can be considered in the decision phase. However, the number of possibilities evolves exponentially 
with the number of faults or components faults. Moreover, multiple faults in dynamic systems are 
difficult to detect because they can mask or offset each other’s effects. Any assumption of a single 
fault can lead to a misdiagnosis when multiple faults occur (Daigle et al., 2006).

Algorithms for diagnosing multiple faults are therefore more complex than those for single 
faults for two reasons: First, the effects of one fault may be masked or compensated for (also called 
protected) by the effects of another fault. The second difficulty is that the same multiple faults may 
manifest themselves in different ways depending on the order in which they occurred.

According to Weber et al. (1999) and under the assumption of linearity, the isolation of multiple 
faults can be handled by employing an extended signature table, including a new column for each 
fault combination, leading to a combinatorial solution. The number of columns of the extended 
incidence matrix can be equal to 2n − 1 if all multiple faults are considered (n being the number of 
simple components of the system).

The theoretical signature of a multiple fault is usually obtained from the signatures of the simple 
faults. Let us consider that Fj is a multiple fault corresponding to the simultaneous occurrence of k 
simple faults F1, . . . Fk, then, the entries of the signature vector of Fj is given by:
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Thus, the effects of the faults are added, and the new signature produced by the multiple faults 
is given by a logical “ OR ” between the signatures of the different single faults (Weber et al., 1999). 
Moreover, the fact that the signatures of the multiple faults are obtained from the signatures of the 
single faults expresses the intuitive idea that a multiple fault can only affect an ARR if, and only if, 
at least one of the single faults of which it is composed affects that ARR. This means that the scope 
of a multiple fault is the union of the scopes of its single fault constituents.

In this work, we will focus on model-based diagnosis. The model-based diagnosis is based on 
the use of a model of the physical system (Abid & Hafid, 2012, 2013). This model is described using 
a formalism language adapted to the needs of the application. When the data of the model differ 
from those of the physical system, an anomaly is detected. The detected error is then explained by 
providing a diagnostic space (a diagnostic being a set of faulty components).

Definition 1: A component x is protected by the failure of component y, if the fault signature of 
x is included in that of y (Odintsova et al., 2004).
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PROPOSED APPROACHES DESCRIPTION

The complexity of solving an MFD problem leads to a combinatorial difficulty, because the discovery 
of a solution that best explains all of the symptoms cannot be done in a “reasonable time.”

The multi-fault localization problem is a difficult problem that cannot be solved in an exact way 
in an acceptable computation time. This section presents two approaches: The first one describes 
the modified exact methods for faults localization, and the second is an adaptation of the modified 
ACO with GA parameters to this multi-fault localization problem. The overall approach consists in 
iteratively modifying a set of initial solutions while hoping to reach a final solution respecting the 
constraints of the problem.

Problem Formulation
To create a mathematical formulation for multi-fault diagnosis, we need to define the problem in 
terms of variables, constraints, and objectives. Below is a simplified mathematical formulation that 
we can adapt based on the specifics of the system and diagnostic approach:

Variables

•	 Fi : binary variable indicating whether fault i is present (Fi = 1 ) or not (Fi = 0 )
•	 Di : binary decision variable indicating whether fault i is diagnosed ( Di = 1 ) or not ( Di = 0 ).
•	 Oj : Binary variable indicating whether observation j is true (Oj = 1 ) or false (Oj = 0 ).

Objective

•	 Minimize the total cost, including the cost of undetected faults, the cost of false diagnoses, and 
any other relevant costs

Constraints

1. 	 Fault detection constraints:
◦◦ If a fault is present, it should be detected: F D ii i≤ ∀��
◦◦ If a fault is diagnosed, it must be present: D F ii i≤ ∀��

2. 	 Consistency constraints:
◦◦ Ensure consistency between faults and observations: F O ii j j≤ ∀∑    . This constraint 

enforces that if a fault is present, at least one observation related to that fault should be true.
◦◦ Ensure consistency between diagnosed faults and observations: D O ii j j≤ ∀∑    . This 

constraint ensures that a fault cannot be diagnosed unless there is at least one observation 
supporting it.

3. 	 Limit on diagnosis faults:
◦◦ Limit the number of diagnosed faults to a certain threshold: 

i iD threshold∑ ≤

Optimized Exact Method Approach
We optimized the enumerative method in order to validate the results by comparing them with the 
proposed GA-ACO approach.

The modification brought to the algorithm is the reduction of the FSM (with the use of the 
criteria 1 and 2, in the fourth section), which allows to reduce the possible combinations of faults.
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Fault isolation from the reduced FSM typically involves identifying the faulty components or 
subsystems in a system based on the observed fault signatures. The process generally follows these 
steps:

1. 	 A fault signature matrix is constructed by observing the system’s behavior under various fault 
conditions.

2. 	 An observed fault signature is given.
3. 	 Reduce the fault signature matrix with involving criteria 1 and 2 (see Section 4) then generate 

an extended FSM with all combinations of faults and calculate their signatures (see Equation 1).
4. 	 Compare signatures: For a given observed fault signature, compare it with the extended reduced 

FSM. Measure the similarity or distance between the observed signature and the extended FSM.
5. 	 Identify the faulty components or subsystems based on the comparison results.
6. 	 Apply the principle of parsimony.

Figure 1 represents the approach adopted for the resolution of the fault location problem.
Data:

          n= Number of simple components, 
          Bits=String of n characters (0 or 1) 

Figure 1. The general flowchart of optimization by the optimized exact algorithm
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            Table of components TAB = Table of simple component 
names, 
            New_Cmp = New combination of components to insert in 
TAB,

Results
TAB table of the different possible combinations. 
Begin 
  // Initialization of Bits to n ‘0 
   For i=1 to n 
   Bits ¬ Bits + ‘0’
   // Possibility calculation loop 
   Repeat 
           Bits ¬ Bits + ‘1’          // Addition (+) dans le sens 
binaire
   // The new component is the combination of those that are 1 in 
Bits 
          for i =1 to n  
                 if Bits[i] = ‘1’ 
New_Cmp ¬ New_Cmp + TAB[i]
// Insertion 
                              Increase TAB length  
           TAB ¬TAB + New_Cmp
// Stop conditions: 2n possibilities
    until Bits contains only ‘1’s
   End.

Hybrid Bio Inspired ACO-GA
For the ACO-GA approach, we have modified the basic version of the ACO algorithm by introducing 
blind and nonblind search in order to improve the exploration elaborated for the localization of defects, 
and we combined the genetic operators of crossing and mutation with the ACO algorithm.

This section presents an adaptation of the ACO-GA to the problem of fault location through 
the fault signature matrix. For this purpose, it evolves a population of several solutions in order to 
improve the individuals and, at each generation, a new set of individuals is proposed. We thus obtain 
a set of solutions (Figure 2).

In our case, we will try to find the solutions that are closest to the observed fault signature, and 
for that we will start with a population of simple fault signatures. These signatures will be compared 
with the observation, and the ones that come closest (according to the Hamming distance) will be 
selected. Then, a crossing between faults will be performed in order to generate new signatures that 
will be compared, and the best ones will be selected. This operation must be repeated a number of 
times defined in the algorithm parameters. Several improvements can be made to this algorithm in 
order to optimize the results and the calculation time. In the following we will present these different 
improvements using the following example, which is based on a signature table of twenty-five (25) 
components and six (06) ARRs (Figure 3). This FSM is reduced using criteria 1 and 2 shown in 
Figure 4.

Table 2 shows the fault signature that will be used.

Notations Used in the Adaptation
Before describing the different steps of our algorithm, we need some notations:
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•	 f: Number of ants, we identify in the following the ants and their solutions, stored in a table 
sorted by total decreasing cost, the best solution is thus the last one.

•	 ρ: Pheromone track persistence rate 0 ≤ ρ < 1.
•	 Pa: Probability of blind movement, ignoring pheromone traces.
•	 µ: Index of the ant.
•	 Fµ: Constant weight assigned to the ant number µ.
•	 Lµ: Cost of the solution found by the µ ants.

Figure 2. The general flowchart of optimization by ACO-GA
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DESCRIPTION STEPS OF ACO-GA ALGORITHM

The goal of the ACO-GA algorithm is not to find all possible solutions, as in the exact approach, 
but to find solutions that are as close as possible to the observation’s signature and that involve as 
few components as possible. Indeed, the more components that are involved in the generation of a 

Figure 3. Binary fault signature matrix

Figure 4. Reduced table of faults signature
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signature, the more the protection effect is amplified and therefore the further away from the real 
solution. These two objectives, i.e., to get closer to the fault signature and to minimize the number of 
components per solution, define the objective function of the ACO-GA algorithm that we wish to use.

Components Eligible to Participate in Solutions
When possible, it would be more interesting to generate only population components respecting the 
constraints. This will accelerate the convergence.

Criterion One
We perform a global search of the signature table for components with the same signature as the 
observation, before generating the initial population. These components will be excluded from the 
generation of individuals because their signature is the same as the one of the observation. Thus, any 
variation would not lead to a better solution, and any combination with another component would 
not bring any improvement to the individual but, on the contrary, would protect this newly added 
component. These components, which are of no help to the individual, are displayed at the end of 
the algorithm as exact solutions to the problem.

In the example we are dealing with, the component C25 will be excluded from any participation to 
an individual of the population from the beginning. It will be re-displayed at the end as an exact result.

Criterion Two
On the other hand, when inserting a component into an individual, one must ensure that the signature 
of the component is a subset of the signature of the fault. That is, the component must not be sensitive 
to an ARR to which the fault is not sensitive. To implement this constraint, we will associate each 
component with its binary sum, which is the sum of the bits of its signature. Thus the signature of 
C1, which is only sensitive to the first ARR, will be the binary number (100000). We will use the 
function σB to calculate this number for each component. Thus, the condition quoted before, and for 
any component, Ci to be added to the individual, will be written:

σ σ σB i B BC fault fault( )+ ( ) = ( ) 	 (2)

Where the operator (+) represents the binary AND. The components C2, C4, C7, C8, C9, C10, C13, 
C15, C16, C17, C20, C23 do not satisfy this condition and will therefore be excluded from any participation 
in the generation of individuals.

Table 2. Fault signature observation

F a u l t  S i g n a t u r e

A R R 1 1

A R R 2 0

A R R 3 1

A R R 4 0

A R R 5 1

A R R 6 1
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The Coding of Individuals
Each solution of the treated problem represents an individual of the population. The individual is a set 
of components of the system, and each individual is represented as a sequence of bits (binary coding), 
where each one bit (01) indicates that the corresponding component is used by the individual. Thus, an 
individual I is represented by a chromosome 100010100000, which indicates that this individual uses 
the first, fifth, and seventh component in the list of components accepted as a solution. The number of 
bits of the chromosome is equal to the number of components admitted to participate in the solutions. 
Indeed, we will see later that not all the components can be used (admitted). On the other hand, the 
signature of an individual is the (binary) sum of the signatures of its different components. Thus,

Sign I Sign C Sign C Sign C( ) = ( )+ ( )+ ( )1 5 7
	 (3)

Generation of Initial Solutions
The starting solutions of an ACO algorithm are in general random, each ant solution represents a 
sub-set of failed components, and the obtained solutions are on average poor but well dispersed in 
the search space.

To reinforce the initial population, we adopt the following procedure:

•	 for each solution of the initial population:

◦◦ generate 10 solutions by performing permutations in the solution vector
◦◦ evaluate the 10 solutions with the fitness function the best solution among the 10 will be kept

These initial solutions allow to compute the initial pheromone trace in the search space.
To generate the initial population, the number of individuals is a parameter of the algorithm 

that must be specified at the beginning. In our example, we set it to six (06) (Table 3). This number 
will increase with a high number of components. For implementation constraints, and in order to 
process the individuals pair by pair in order to apply the genetic operations to them, we require that 
the number of individuals in the population be an even number.

In our example, we will randomly generate individuals by drawing uniformly among the accepted 
components of the system. This choice was made in a completely random way in order to make the 
most of the performance of the ACO algorithm.

Population Evaluation
Once the initial population has been created, we will select the most promising individuals, i.e., 
those who will contribute to the improvement of the population. To do this, we will assign a “score,” 
or quality index, to each of our individuals. This score is calculated through an Objective function. 
This function allows to show the notion of dominance between individuals. Each individual of the 
population is defined by two (02) functions:

•	 ∆H: which represents the Hamming distance between its signature and the fault signature (its 
value varies between 0 and ARR ). In other words, this function calculates the number of different 
bits between the individual’s signature and the fault signature.

•	 Nb: which gives the number of elements of which the individual is composed (its value varies 
between 02 and ARR ). The maximum value of the function Nb is conditioned by the fact that 
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a combination of more than ARR  elements in an individual would be non-localizable by the 
initial signature table of the system.

The individual is more interesting if the value of ∆H is close to 0 (i.e., the same signature as the 
fault) and if the value of Nb is close to 2 (i.e., the minimum number of elements). Therefore, the 
algorithm aims to achieve these two objectives.

The Global Objective Function
To determine the Objective function for each individual, we will use the two functions ∆H and Nb in 
a new Fitness function, such that:

fitness I
ARR I

ARR

ARR Nb I

ARR
H( ) =

− ( )
×

− ( )+∆
�

1
	 (4)

where: ARR  is the maximum number of ARRs in the signature table.
It is clear in this case, that a Fitness equal to one (01) corresponds to a simple and exact solution 

of the problem (i.e., Nb = 1 and ∆H = 0). We thus obtain the following results for our example:

General Iteration Steps
Updating the Pheromone Traces

At the beginning, for any individual i (set of failed components), the amount of pheromone ti  is 
zero. We update it at the beginning of each iteration according to the following formula, which 
includes one term for evaporation and one for enhancement.

τ ρτ τi i
i

f

i= +
=
∑

1

∆ 	 (5)

where: ρτi  Evaporation term 

i

f

i=∑ 1
∆τ  Rein forcement term

With ∆τ
µ

µi

F
L

=

Table 3. Calculation of the evaluation functions on the example

Individuals Chromosomes Signatures Hamming distance 
(∆H)

Number of elements 
(Nb)

Evaluation 
function

1 101000000000 100010 2 2 0,555556

2 000000001000 100010 2 1 0,666667

3 000010000100 100011 1 2 0,694444

4 011000100101 101011 0 5 0,333333

5 010000001000 101010 1 3 0,555556

6 000000000111 101001 1 3 0,555556
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A simple idea is to assign equal weights F µ = 1 to the ants, but then the quality of the solution 
is ignored in this additional weighting of the solutions. Since the f solutions are sorted by decreasing 
cost, a better option is to use the rank of the ant by posing F µ µ= : the rank of the ant.

Moving Ants to Build New Solutions
Each ant µ constructs a solution by choosing a set of failed components in a probabilistic way (ignoring 
the pheromone traces) or by taking the traces into account; blind choices are necessary to explore 
new solutions.

Structure of the Algorithm
The population of f ants actually consists of fe “elitist” ants and f −fe ”non-elitist” ants. The elitists 
ensure the convergence of the algorithm, while the non-elitists explore the search space to maintain the 
diversity of solutions and prevent premature convergence. In the table of f solutions, the last solution 
of an elitist ant is replaced by the new one only in case of improvement. On the other hand, the last 
solution of a non-elitist ant is always replaced by its new solution, whether there is an improvement 
or degradation.

•	 Blind choice move:
◦◦ For each ant in the list, we follow this approach if the probability condition is verified and 

ignoring the pheromone traces:
1. 	 Randomly choose two elements from the selected solution (ant).
2. 	 Make mutation between the two elements of the solution.
3. 	 Evaluate the obtained solution.
4. 	 If the ant is non-elitist, then replace it with the new one if there is an improvement.
5. 	 Reclassify the list of ants.
6. 	 Update the pheromones.

•	 Move in nonblind choice
◦◦ For each ant in the list, if the probability condition is not verified, we follow the following 

approach taking into account the pheromone traces and the problem constraint:
1. 	 Randomly choose a cell from the selected solution (ant).
2. 	 Change the switch assigned to the cell by the switch that has the best pheromone 

concentration for this cell and compared to any solution in the list.
3. 	 Evaluate the resulting solution.
4. 	 Replace the solution if the ant is non-elitist Otherwise Replace the solution (elitist ant) 

if there is an improvement.
5. 	 Reclassify the solutions in the list according to the value of the cost function.
6. 	 Update the pheromone traces.

SIMULATION AND RESULTS

Parsimony is a principle that consists in using only the minimum number of elementary causes to 
explain a phenomenon. For example, in fault diagnosis, this principle favors the occurrence of a 
minimum number of faults (even a single fault) to explain the observed symptoms. In an MFD, this 
principle is used to simplify the diagnosis procedure. It is also called “principle of simplicity,” or 
“principle of economy,” because it excludes the multiplication of reasons and demonstrations within 
a logical construction. Thus, during MFD, the principle of parsimony is applied in case of difficulty 
in determining which faults are the most probable: These are a priori those that are the simplest, and 
we prefer to minimize the set of combinations of components in faults.
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Exact Method With Optimized Extended Reduced Signature Table
Once the components (or groups of components) with the corresponding signature are identified, 
they can be examined in detail to simplify them. It is preferable to keep the simplest combinations 
at the expense of those that contain many components.

Any component whose signature does not bring any new element to the solution of the problem 
is considered as protected, even if its signature resembles that of the fault. This optimization method 
can be applied to any column containing a large number of possible combinations.

This execution time was reduced after modification of the exact algorithm by introducing the 
reduced signature table (criteria 1 and 2). The classical exact algorithm could not give results for 25 
components because of the time and space complexity.

ACO-GA Algorithm
The ACO-GA algorithm converges quickly to the best solution compared to the exact method; the 
ACO-GA algorithm gave us the same results as the exact algorithm in a minimum of execution time 
in only 10 iterations, which explains the importance of the design of our ACO-GA algorithm (initial 
population that was studied with genetic parameters, the objective function, and the new search 
method adopted by the ants: blind and nonblind).

CONCLUSION

The problem of MFD consists of identifying one or more problems or faults that are most likely 
responsible for a given set of symptoms. Due to its complexity, this problem cannot currently be 
solved exactly, especially for large instantiations.

Table 4. Global list of faulty components

Failed components Protected components Components that cannot be part of the solution

C
25

C
11

C
18

C C
12 14
,( )

C C
19 21
,( )

C C
3 24
,( )

C C
1 22
,( )

C
5

C
6

( , , , , , , , ,C C C C C C C C
2 4 7 8 9 10 13 15

C C C C
16 17 20 23
, , , )

Table 5. ACO-GA parameters

Parameters Value

population size 

Pa
evaporation rate 
iteration number 

crossover 
Mutation

10
0.8
0.3
10

single point 
random one bit
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Figure 5. Comparison of different algorithms

Table 6. Global list of faulty components

Failed components Protected components Components that cannot be part of the solution

C
25

C
11

C
18

C C
12 14
,( )

C C
19 21
,( )
C
24

C
18

C C
1 3
,

C C
5 6
,

C
22

( , , , , ,C C C C C
2 4 7 8 9

C C C C
10 13 15 16
, , , ,

C C C
17 20 23
, , )



International Journal of Applied Metaheuristic Computing
Volume 15 • Issue 1

17

In this paper, the adapted heuristic is the modified ant colony algorithm with GA. It was inspired 
by the field of swarm intelligence, which studies the collective intelligent behaviors of animals and 
uses sophisticated exploration techniques to avoid blocking at a local minimum.

The implementation of the method consisted in

•	 reduce the number of components with two criteria to encoding individuals.
•	 reinforce the initial population with permutations.
•	 define a series of moves (blind and nonblind search) for the solutions. These moves aim at 

improving the cost of the solution and restoring its feasibility. This led us to define a payoff 
structure with updated procedures to efficiently choose the best solution at each iteration and 
better explore the search space.

The results obtained are satisfactory and show the efficiency of the adopted method. Our 
implementation has also been tested against different parameters of the ACO-GA method to improve 
its robustness and efficiency. Thus, we studied, among others, the influence of the population size 
(number of ants), the number of iterations, and the type of mutation and crossover. Finally, the results 
were compared with those obtained by the reduced exact algorithm applied to the same example, 
which confirmed the efficiency of the adaptation.

Despite the satisfactory results obtained, the performance of our approach strongly depends on 
the choice of parameters. These are not easy to choose, and the values used in the program are values 
that give globally good results, but which are not necessarily the best for a given type of problem.
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